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Abstract

This paper extends the technique of gradient boosting in mortality forecasting. The two
novel contributions are to use stochastic mortality models as weak learners in gradient boosting
rather than trees, and to include a penalty that shrinks the forecasts of mortality in adjacent
age groups and nearby geographical regions closer together. The proposed method demon-
strates superior forecasting performance based on US male mortality data from 1969 to 2019.
The boosted model with age-based shrinkage yields the most accurate national-level mortality
forecast. For state-level forecasts, spatial shrinkage provides further improvement in accuracy
in addition to the benefits achieved by age-based shrinkage. This additional improvement can
be attributed to data sharing across states with both large and small populations in adjacent
regions, as well as states which share common risk factors.
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1 Introduction

Projections of future mortality levels play a crucial role in the decision-making processes of insur-
ance companies, health service providers, and government agencies. Mortality data exhibit strong
patterns across different age groups as well as geographical regions. Models for forecasting mortality
are tailored towards exploiting these patterns. However, while such models may work well overall,
they can lack accuracy for specific age groups and/or regions, especially those with low population
exposure. To address this issue, we extend the mortality forecasting literature in two ways. First,
we adapt the machine learning technique of gradient boosting by using popular mortality models as
weak learners rather than trees. Second, within this boosting framework, we exploit the structure in
mortality data by shrinking forecasts corresponding to similar age groups and neighbouring regions
closer together.

The development of mortality models has been ongoing for centuries, and the rich literature en-
compasses both deterministic mortality models and stochastic mortality models (for a review, see
Booth and Tickle, 2008). Stochastic mortality models have become increasingly popular since the
introduction of the Lee–Carter model (Lee and Carter, 1992) and other similarly motivated models
(see, e.g. Li and Lee, 2005; Cairns et al., 2006; Hyndman and Ullah, 2007; Plat, 2009). These models
have been successfully applied in both single-population and multi-population settings. However,
most stochastic models impose restrictions on the functional form of the age and time structure
of the data, which may only suit the mortality experience of some, but not all, age groups of the
population (Cairns et al., 2009; Li et al., 2016, 2017; SriDaran et al., 2022). Another challenge in
mortality modeling is to accurately and efficiently forecast mortality rates across a large number
of populations. Recent research has investigated this topic and identified common mortality trends
across countries (for a review, see Enchev et al., 2017). Furthermore, researchers have utilized in-
formation from adjacent regions in multi-population forecasting to improve overall accuracy (see
e.g. Cupido et al., 2020; Lin and Tsai, 2022).

As a popular machine learning technique, boosting has been increasingly adopted for forecasting in
general (see Januschowski et al., 2022, for the success of gradient boosting in the M5 competition),
in actuarial science (see Lee and Lin, 2018) and more specifically in modeling and forecasting mor-
tality (for a review on machine learning techniques in mortality modeling, refer to Richman, 2021).
Loosely speaking, gradient boosting fits a so-called “weak learner” to the data, computes (pseudo)
residuals, fits the same weak learner to (pseudo) residuals, continuing this process in an iterative
fashion. The literature on using boosting together with stochastic mortality models is quite sparse
with some notable extensions. Deprez et al. (2017) and Levantesi and Pizzorusso (2019) use a tree-
based boosting approach for forecasting mortality rates and for backtesting stochastic mortality
models. They fit a Poisson regression model on death counts, with the mean being a product of
fitted mortality rates from a stochastic model and a term that is trained by tree-based boosting.
Bjerre (2022) compare so-called “pure” gradient boosting models with a two-stage approach that
applies tree-based gradient boosting to the residuals from a stochastic mortality model. The main
finding is that the pure models have superior forecasting performance.

A common feature of these aforementioned studies is that boosting is always carried out using trees
as weak learners. While trees are a popular choice of weak learners, boosting can be used in con-
junction with other models including logistic regression (Friedman et al., 2000), generalized additive
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models (Tutz and Binder, 2006), and more recently copulas (Brant and Haff, 2022).1 The novelty
of our approach is in using mortality models - specifically the Lee–Carter model - instead of trees as
the weak learner in boosting. A weakness of the Lee–Carter model is that mortality rates for all age
groups are proportional to a single time trend. By fitting the Lee–Carter model repeatedly under
a boosting framework, we capture mortality trends for age groups and regions that were poorly
estimated in previous fits. The final forecast is based on an ensemble of Lee–Carter models. In this
way we create a boosting method catered towards the domain of mortality forecasting.

The analysis of spatial data has been extensively studied in statistics (for a review we refer readers
to the monograph of Gelfand et al., 2010). Methods in spatial statistics exploit the neighbourhood
structure of data. In our setting, this corresponds to geographical neighbours (more specifically US
states that share a border) as well as neighbouring age groups (age groups that differ by exactly one
year). In the proposed boosting framework, a penalty term that shrinks the forecasts of “neighbour-
ing” mortality rates closer together is added to the objective function. The penalty term depends
on the graph Laplacian matrix, to be defined in Section 2. This matrix has been used elsewhere in
mortality modelling, by Arató et al. (2006) who use it as a prior covariance for random effects in a
hierarchical Bayesian model for mortality rates, by Cupido et al. (2020) who spatially filter mortal-
ity rates of different US counties, and by Huynh and Ludkovski (2021) who model multi-population
mortality models with Gaussian processes. Our approach differs from existing work in that it carries
out spatial shrinkage in a boosting framework. To the best of our knowledge, our paper is the first to
use spatial shrinkage together with boosting, not just in mortality modeling but for any application.

We apply the proposed boosted mortality models to US male mortality data for ages 0–85+, over
the period 1969–2019. For both national-level and state-level mortality rates, our boosting approach
substantially improves forecast accuracy over benchmark mortality models. For national-level mor-
tality rates, the empirical results demonstrate superior forecasting performance of the boosted model
with age-based shrinkage (later on referred to as the “GBLC-age model”). In a multi-population set-
ting, we apply the boosting approach to the US state-level mortality data with both age- and state-
based shrinkage incorporated in the model (later on referred to as the “GBLC-age-state model”).
Our results show that in addition to the improvement achieved by age-based shrinkage, state-based
shrinkage provides an additional enhancement to forecast accuracy, owing to “borrowing” informa-
tion from neighboring states. The additional benefit from state shrinkage is particularly pronounced
in states with sparse population or those subject to common risk factors. It should be noted that
the proposed boosting approach with shrinkage is readily applicable to other multi-dimensional
forecasting problems where the data structure can be further utilized.

The rest of this paper is organized as follows. Section 2 introduces the new boosting and shrinkage
methodologies we propose to forecast mortality rates. Section 3 describes and visualizes the US
mortality data used in this research. In Section 4, we present empirical results at both national
level and state level based on the data described in Section 3. Section 5 concludes the paper.

2 Methodology

In this section we outline our novel methodology for forecasting using boosting and shrinkage. Sec-
tion 2.1 describes the Lee–Carter model, which is used as a weak learner in our boosting algorithm.

1Also the popular R package caret (Kuhn and Max, 2008) implements boosting with GAMs, GLMs, smoothing
splines, and neural networks.
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Section 2.2 discusses the gradient boosting algorithm including modifications for the mortality fore-
casting setting. Section 2.3 deals with the case of single-population mortality forecasting, such as
national-level mortality for the US. A penalty shrinking the forecasts of “neighbouring” time series
together is incorporated into the boosting framework, where neighbouring time series correspond to
mortality rates for age groups that differ by one year. In Section 2.4, we describe how the proposed
algorithm can be extended to multi-population mortality forecasting, where shrinkage is based on
age as well as the geography of the regions.

2.1 The Lee–Carter model

Introduced in the early 1990s, the Lee–Carter model (Lee and Carter, 1992) is regarded as one of
the most significant mortality models, inspiring an era of stochastic mortality modeling. The model
is formulated as follows

log(mx,t) = ax + bxκt + ϵx,t, (1)

for x = 1, . . . , N and t = 1, . . . , T , where mx,t is the mortality rate for age x in year t, ax and bx
respectively are age-specific intercepts and coefficients, κt represents a time-varying factor that is
common to all ages, and ϵx,t is the error term. To ensure identification, the model is estimated
under the following constraints

N∑
x=1

bx = 1,
T∑
t=1

κt = 0 .

With these restrictions, it is natural to interpret ax as average log mortality over time, a measure
of baseline mortality for a given age. The coefficient bx describes the rate of decline of mortality at
age x in response to changes in κt. The bilinear term bxκt captures the mortality improvement over
time for age x. However, the Lee–Carter model only includes one time-varying factor κt, resulting
in a trivial correlation structure in mortality improvement across different ages.

There has been a rich body of work on mortality modeling and forecasting over the last few decades,
which includes various extensions of the Lee–Carter model or similar approaches (see e.g. Lee, 2000;
Brouhns et al., 2002; Cairns et al., 2006; Renshaw and Haberman, 2006; Hyndman and Ullah, 2007;
Plat, 2009, amongst others). Despite its limitations, the Lee–Carter model has been widely rec-
ognized and applied in the fields of actuarial science and demography and to date, the model is
frequently used as a benchmark in mortality research. In the paper, we adopt the Lee–Carter model
as a weak learner for forecasting with gradient boosting.

Estimation of the Lee–Carter model is conducted as follows. First let yx,t := log(mx,t) and let Y
denote an N × T matrix with yx,t in row x and column t (the same convention is used to denote all
matrices throughout the paper). Each age-specific intercept is estimated by the sample mean over
time of log mortality rates for that age group. The age-specific intercepts are then subtracted from
the log mortality rates and stacked in a matrix Ỹ. The singular value decomposition of Ỹ yields the
estimates of the age-specific coefficients bx and the time trend κ̂ = (κ̂1, . . . , κ̂T )

′. This is summarized
in Algorithm 1. In addition to the model parameters, the fitted values ŷx,t are also required for
boosting. Note that although the Lee–Carter is a linear model, the forecasts depend on the singular
value decomposition of Ỹ, which is a highly non-linear transformation of the input matrix. In our
empirical work, Algorithm 1 is implemented using the R package demography (Hyndman, 2023).
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Algorithm 1 Estimating the Lee–Carter model

Input An N × T matrix Y
Output ŷt for t = 1, 2, ..., T , κ̂ = (κ1, . . . , κT )

′, â = (â1, . . . , âN)
′ and b̂ = (b̂1, . . . , b̂N)

′

1: procedure LC(Y)

2: âx ← 1
T

∑T
t=1 yx,t,∀x.

3: ỹx,t ← yx,t − âx,∀x, t and stack into a matrix Ỹ = (ỹ1, . . . , ỹT ).

4: Carry out the singular value decomposition of Ỹ.

5: κ̂← su
∑

x vx, where κ̂ is the estimated time trend, s, u and v are the first singular value,

left singular vector and the right singular vector of Ỹ respectively.

6: b̂← 1∑
x vx

v,∀x.

7: ŷx,t ← âx + b̂xκ̂t, for t = 1, 2, ..., T,∀x.

2.2 Gradient boosting

Boosting (Breiman, 1997; Friedman, 2001) is a popular method in machine learning for regression
and classification, with modern variants having been seen considerable success in forecasting ap-
plications. Boosting requires the use of a non-linear prediction, most typically from a tree, as a
weak learner. Boosting aims to find an ensemble of weak learners ft =

∑j
l=0 γlŷ

(l)
t , where ŷ

(l)
t is the

prediction from the lth weak learner and γl is the corresponding coefficient. We consider a quadratic
loss function

L(yt, ft) =
T∑
t=1

(yt − ft)
′(yt − ft) , (2)

Other loss functions can be considered, for example, if the objective is quantile prediction then
pinball loss can be used.

Our algorithm for boosting follows the process outlined in Friedman (2001), adapted so that the
Lee–Carter model is used as a weak learner and to account for a vector-valued response as in Equa-
tion 2. Boosting fits the weak learner to the gradient of the loss function taken with respect to ft
in an iterative fashion. For the case of a quadratic loss, this implies fitting the weak learner to the
residuals, finding the coefficient for each weak learner in the ensemble using one-dimensional opti-
misation2, and computing new residuals and iterating this procedure. We set the maximum number
of iterations to J = 50, while the algorithm also stops if the change in the value of the loss function
is less than a small positive number ε = 10−8. This procedure is summarized in Algorithm 2, and
throughout the remainder of the paper it is referred to as the Gradient Boosted Lee–Carter (GBLC)
model.

To forecast with a Lee–Carter model, it is common to fit a time series model to the estimated κ̂.
Then forecasts κ̂T+h|T can be found where the subscript denotes a h-step ahead forecast made using

information up to time T . Forecasts of log mortality are computed as ŷx,T+h|T = âx + b̂xκ̂T+h|T for

x = 1, . . . , N . When an ensemble from a boosted Lee–Carter model is available, forecasts of κ̂
(l)
T+h|T

2This is implemented using the optim package in R.
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Algorithm 2 Gradient Boosted Lee–Carter forecasting
Input Y
Output κ̂(l), â(l),b̂(l) and γl for l = 0, . . . , j

1: procedure GBLC(Y)

2: ŷ
(0)
t , â(0), b̂(0) ← LC(Y) for t = 1, . . . , T

3: γ0 = argmin
γ

L(yt, ŷ
(0)
t )

4: z
(0)
t ← yt − γ0ŷ

(0)
t for t = 1, . . . , T

5: Z(0) ← (z
(0)
1 , z

(0)
2 , . . . , z

(0)
T )

6: L(0) ←
T∑
t=1

(yt − γ0ŷ
(0)
t )′(yt − γ0ŷ

(0)
t )

7: j ← 0

8: while j ≤ J or
∣∣L(j) − L(j+1)

∣∣ > ε do

9: ŷ
(j+1)
t , â(j+1), b̂(j+1) ← LC(Z(j)) for t = 1, . . . , T

10: γj+1 = argmin
γ

L(z
(j)
t , ŷ

(j+1)
t )

11: z
(j+1)
t ← z

(j)
t − γj+1ŷ

(j+1)
t

12: Z(j+1) ← (z
(j+1)
1 , z

(j+1)
2 , . . . , z

(j+1)
T )

13: L(j+1) ←
T∑
t=1

(z
(j)
t − γj+1ŷ

(j+1)
t )′(z

(j)
t − γj+1ŷ

(j+1)
t )

14: j ← j + 1

can be produced using a different time series model for each l and the ensemble forecast is given by

j∑
l=0

γl

(
â(l)x + b̂(l)x κ̂

(l)
T+h|T

)
, for x = 1, . . . , N.

In this paper, the forecasting model used for κ̂ is a random walk with drift implemented with the
rwf in the R package forecast (Hyndman et al., 2020), although other time series models, such as
an ARIMA, could also be used.

2.3 Boosted Lee–Carter with age shrinkage

A distinct characteristic of mortality data is the age structure of the data. This structure should
be taken into account in forecasting, for example, the mortality forecast for the 50 year age group
should tend to be similar to those for the 49 and 51 year age groups. In order to shrink these
forecasts closer together we replace the loss function in Equation 2 with the following objective
function

L(yt, ft) =
T∑
t=1

(yt − ft)
′(yt − ft) + λf ′tWft , (3)
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where λ is a shrinkage parameter found by cross validation andW is a shrinkage matrix. Algorithm 2
remains mostly the same, however, rather than fit a Lee–Carter model to the residuals, line 4 is
replaced by

z
(0)
t ← yt − γ0f

(0)
t − 2λWf

(0)
t ,

and Algorithm 2 line 11 is similarly changed as

z
(j+1)
t ← z

(j)
t − γj+1f

(j+1)
t − 2λWf

(j+1)
t .

Age level shrinkage is achieved by setting W to the following matrix

W(age) =



0 0 0 . . . . . . . . . 0

0 1 −1 0
...

0 −1 2 −1 0
...

. . . . . . . . . . . . . . .
...

... 0 −1 2 −1 0

... 0 −1 1 0
0 . . . . . . . . . 0 0 0


,

where the superscript (age) denotes that the matrix shrinks across neighbouring age groups. In this
case we have

λW(age)f
(j)
t =



0

λ(f
(j)
2,t − f

(j)
3,t )

λ(f
(j)
3,t − f

(j)
2,t + f

(j)
3,t − f

(j)
4,t )

...

λ(f
(j)
N−1,t − f

(j)
N−2,t)

0


At each step of the boosting algorithm, not only is the Lee–Carter model fitting residuals unex-
plained by previous Lee–Carter fits, but is also fitting any discrepancy that may exist between the
prediction for an age group and the predictions for adjacent age groups. Note that age 0 (infant
mortality) and the composite 85+ age are highly idiosyncratic therefore predictions for these groups
are not shrunk at all, and the corresponding rows and columns of W are entirely made up of zeros.3

0 1 2 ... 83 84 85+

Figure 2.1: Graph representing neighbourhood structure of ages.

The structure of W can be understood through the graph in Figure 2.1. We can see that the
“neighbors” are defined as ages that differ by exactly one year. Since we do not shrink the age
0 and 85+ groups at all, these nodes are disconnected from the rest of the graph. Ignoring the
disconnected nodes, the graph has the simple structure of a chain. The matrix W(age) is the graph

3Shrinking the age 0 group to the age 1 group, and the age 85+ group towards the age 84 group was implemented,
but led to a deterioration in forecast accuracy for these groups.
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Laplacian, defined as the matrix with off-diagonal elements w
(age)
ik = −1 when node i and k are

neighbours and w
(age)
ik = 0 otherwise, and diagonal elements equal to the degree (or the number

of neighbours) of each node. Each age group has two neighbours, hence the diagonal elements of
W are all 2, with the exception of the ages of 0, 1, 84, 85+. While the connection to the graph
Laplacian may seem superfluous for a simple structure like a chain, its usefulness becomes apparent
for more complex graphs, such as a neighbourhood graph of US states illustrated in the next section.

2.4 Boosted Lee–Carter with age and state shrinkage

We now propose a multi-population version of the boosted Lee–Carter with age and state shrink-
age. We first discuss how the neighbourhood graph is constructed for states and used to obtain a
Laplacian W(state). Since our application is based on state-level mortality in the US, we use the
term “state” rather than “region”, although our methods could be generalized to any geographical
units, for example, counties within a single state, or countries within the European Union.

Figure 2.2: Graph representing neighbourhood structure of selected US states.

Similar to the age-based shrinkage, the structure of W can be illustrated by a graph. The graph
is constructed with each node corresponding to a state, and two nodes sharing an edge if the
corresponding states share a border. States sharing a border at a single point (as occurs, for example,
between Arizona and Colorado) also share an edge in the graph and are treated as neighbours. In
our study, all 50 states as well as the District of Columbia (DC) are included in the shrinkage. The
inclusion of Alaska and Hawaii makes the graph a disconnected graph, implying no shrinkage for
these states. The graph Laplacian for 50 states and DC is too large to present here. Therefore, a
graph for a subset of seven states is shown in Figure 2.2 for illustrative purposes. The Laplacian
of these states is shown as follows, where state labels4 are given in the rows and columns and the
data and forecasts for the states would need to be stacked in this order for shrinkage to have the
intended effect.

W(state) =



OH PA NY WV NJ MD DE

OH 2 −1 0 −1 0 0 0
PA −1 6 −1 −1 −1 −1 −1
NY 0 −1 2 0 −1 0 0
WV −1 −1 0 3 0 −1 0
NJ 0 −1 −1 0 3 0 −1
MD 0 −1 0 −1 0 3 −1
DE 0 −1 0 0 −1 −1 3



4For a full list of US state abbreviations and names, please refer to Table A.1 of the Appendix.
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With the construction of W(state) established, the model in Section 2.3 can now be extended to the
multi-population case. Let yx,t,i := log(mx,t,i) be the log mortality rate for age group x, time period
t, and state i, for x = 1, . . . , N , t = 1, . . . , T , and i = 1, . . . , S. Let yt,i := (y1,t,i, . . . , yN,t,i)

′ denote
an N -vector of log mortalities for state i at time t. We stack the observations into an NS-vector as
follows

yt =


yt,1

yt,2
...

yt,S

 .

Other quantities in Algorithm 1 and Algorithm 2, such as ft are stacked in a similar fashion as yt

above, and for both algorithms a single Lee–Carter fit is replaced with separate Lee–Carter fits for
each state.

To employ shrinkage, we must define a neighbourhood structure between nodes that correspond to
age-state pairs. Let Nx,i denote the node corresponding to age group x and state i. Two nodes Nx,i

Nx′,i′ are connected by an edge if either x = x′ and i, i′ are neighbours, or if x, x′ are neighbours and
i = i′. For example, age 50 mortality in New York and age 51 mortality in New York are neighbours.
Also, age 50 mortality in New York and age 50 mortality in Pennsylvania are neighbours. However,
age 50 mortality in New York and age 51 mortality in Pennsylvania are not neighbours.

A graph with the structure described above can be obtained by taking the Cartesian product of two
graphs, which are the neighbourhood graphs for the age and state structure. The graph Laplacian
for combining age and state shrinkage is given by

W(age-state) = W(age) ⊗ IS×S + IN×N ⊗W(state),

where I is an identity matrix and ⊗ is the Kronecker product. WhileW(age-state) could be substituted
directly into the stacked version of Equation 3, this would lead to a single shrinkage parameter
controlling both age and state shrinkage, which we found to perform poorly in practice. To allow
for different age and state shrinkage parameters, we consider the following objective function

L(yt, ft) =
T∑
t=1

(yt − ft)
′(yt − ft) + f ′t(λaW

(age) ⊗ IS×S + IN×N ⊗ λsW
(state))ft , (4)

where λa and λs are shrinkage terms for age and state respectively. These terms are set using
cross-validation over a 2-dimensional grid. In our empirical analysis in Section 4, we consider four
special cases of the objective function in Equation 4 as follows

• GBLC: No shrinkage, set λa = λs = 0;

• GBLC-age: Age shrinkage only, set λs = 0;

• GBLC-state: State shrinkage only, set λa = 0;

• GBLC-age-state: Age and state shrinkage, set λa ̸= 0, λs ̸= 0.

Note setting λa = λs = 0 is equivalent to fitting the GBLC model described in Section 2.2 to
each state independently. The same holds for setting λs = 0 and the GBLC-age approach from
Section 2.3.
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3 Data

In this study, we consider age-specific male mortality rates in the US over the investigation period
1969–2019 for ages 0–85+, at both the national and state levels. Mortality data up to 2019 was
used to avoid the potential impact of the COVID-19 pandemic on the results. For the state-level
analysis, we collect data from all 50 states as well as DC.

For death count numbers, we collect the data from the National Center for Health Statistics (NCHS)
for the period 1969–2004, and from the Centers for Disease Control and Prevention (CDC) WON-
DER online database for the period 2005–2019.5 For the corresponding exposure data, information
on the annual population is obtained from the Survey of Epidemiology and End Results (SEER),
for ages from 0 to 85+.

3.1 National-level mortality

In Figure 3.1, we plot the national-level mortality rates for the US male population during 1969–
2019. The various colors in the plot present different years of observation and illustrate an overall
decreasing trend in the mortality levels, across all age groups. We can clearly observe an “accident
hump” in the data which is made up of elevated mortality rates around at ages in the early 20s.
Another interesting observation is that there seems to be a notable increase in the mortality level for
ages 25–45, over the last 5 to 10 years of the investigation period (see discussions in Couillard et al.,
2021). Studies find that this rise in mortality among young and middle-aged adults is partly due
to drug overdoses, alcohol, suicides, and cardio-metabolic conditions (Harris et al., 2021). Overall,
the total mortality rate series exhibit low variances in the data particularly at older ages, and show
clear and smooth patterns in the age and time dimensions.
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Figure 3.1: National-level male mortality for US: 1969–2019.

5Starting from 2005, the geographic identifier has been removed from the NCHS multiple causes of death database
due to restrictions on the release of sub-national mortality data.
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3.2 State-level mortality

On top of the national-level mortality, it is also important to investigate state-level mortality as
it provides a more granular picture of mortality patterns and trends. This also helps to identify
mortality disparities across different regions, pointing towards causal factors that contribute to the
differences in mortality. To gain a better understanding of how mortality experiences have changed
over the recent decades across the US, we examine snapshots of mortality rates in both 1999 and
2019. In Figure 3.2, we visualize the geographical variations in the US mortality rates for three
representative age groups, namely, 20, 50, and 80. The left panel of Figure 3.2 illustrates mortality
rates in 1999, while the right panel shows rates in 2019.
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0.0020

0.0030

Mortality rate

(a) Age 20, 1999
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Mortality rate

(b) Age 20, 2019
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Mortality rate

(c) Age 50, 1999

0.0040
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0.0080

Mortality rate

(d) Age 50, 2019
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Mortality rate

(e) Age 80, 1999
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0.070

0.080

Mortality rate

(f) Age 80, 2019

Figure 3.2: Male mortality rates across the US in 1999 (left panel) and 2019 (right panel).

From Figure 3.2, we can see an overall improvement in mortality rates across all states for the three
age groups between 1999 and 2019. The improvement is particularly pronounced for age 80, as
indicated by the much lightened color in the right panel compared to the left panel. From both
panels, we can see that geographical variations in mortality rates are very prominent. These varia-
tions can be attributed to several factors, encompassing demographics, socio-economic status, and
lifestyle-related behaviors. For example, a rich body of research has established the relationship
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between mortality experience and socioeconomic determinants including income, education level,
and unemployment rate (see e.g. Jemal et al., 2008; Chapman et al., 2010; Dwyer-Lindgren et al.,
2017; Woolf and Schoomaker, 2019; Lourés and Cairns, 2020). These socioeconomic factors can
be used to explain the geographical variations in state-level mortality in the US. Studies have also
found that the mortality disparities across the US have become more apparent over time (see e.g.
Vierboom et al., 2019; Woolf and Schoomaker, 2019; Couillard et al., 2021). It can be argued that
the mortality experience at the state-level demonstrates comparable geographical patterns across
all three age groups. In general, East and West Coast states have lower mortality rates compared
to Southern states and certain “rust belt”6 states. More specifically, we have identified heavier mor-
tality rates from Alabama, Arkansas, Georgia, Indiana, Kentucky, Louisiana, Mississippi, South
Carolina, and Tennessee. These states are all part of the “stroke belt”7 in the US. This observation
is unsurprising as cardiovascular disease is the leading cause of death in the US.

To further investigate mortality patterns across various regions, we plot the mortality rates for
selected states including California, Florida, Ohio, and Pennsylvania over the full period of 1969–
2019 in Figure 3.3. All four states exhibit relatively smooth patterns in mortality rates, although the
mortality profiles are slightly more jagged for the lower population states of Ohio and Pennsylvania.
The latter part of the 2010s, saw an increase in mortality noticeable among younger to middle-aged
individuals in Ohio and Pennsylvania; on the plot the yellow lines rise above the darker colored lines
in the middle of the two lower panels. This may be attributed to the well documented “deaths of
despair” (Case and Deaton, 2015) that was particularly pronounced in the rust belt. The presence
of this common factor across states motivates the use of spatial shrinkage as described in Section 2.4.
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Figure 3.3: State-level male mortality for California, Florida, Ohio, and Pennsylvania: 1969–2019.

6Although definitions vary, the rust belt states are generally understood to include Illinois, Indiana, Michigan,
Ohio, Pennsylvania, West Virginia, and Wisconsin.

7For a full list of stroke belt states, please refer to Parcha et al. (2021).
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4 Empirical results

4.1 Setup

In this section, we present the empirical results based on the US male mortality data described
in Section 3. Due to the time series nature of the data, we implement 13 expanding windows to
generate forecasts for horizons of h = 1, 2, . . . , 10. More specifically, our training sample for each
expanding window is from 1969 to 1996, 1997, . . . , 2009. The subsequent ten years of mortality
data after each training sample are used for testing purposes. We compare the model performance
of the proposed GBLC, GBLC-age, GBLC-state, GBLC-age-state models against several bench-
mark models, including the Lee–Carter (L–C) model, the Hyndman–Ullah (H–U) model, and the
Hyndman–Booth–Yasmeen (H–B–Y) model. As the L–C model has already been introduced in
Section 2.1, in the following sections, we provide a brief overview of the H–U and H–B–Y models.

4.1.1 The Hyndman–Ullah model

Hyndman and Ullah (2007) proposed a generalized version of the Lee–Carter model which accom-
modates smoothness in the age dimension by employing nonparametric smoothing techniques. The
model is formulated as follows

log(mx,t) = µ(x) +
K∑
k=1

βt,kϕk(x) + ϵx,t, (5)

where µ(x) represents the level of log mortality rates at age x. ϕk(x) refers to a set of orthonormal
basis functions, βt,k are the corresponding coefficients for k = 1, 2, . . . , K, and ϵx,t is the error term.
To predict future mortality levels, the coefficients βt,k are fitted into ARIMA time series models.
The H–U model is implemented by using demography::fdm in R for the following experiments. The
value of K is set to be 6 as suggested by the package.

4.1.2 The Hyndman–Booth–Yasmeen model

In a multi-population mortality modeling setting, it is important to avoid long-run divergence in
mortality forecasts using individually fitted models. Li and Lee (2005) proposed a coherent multi-
population extension of the Lee–Carter model which includes common factors for all populations
within a group of countries. In line with the research by Li and Lee (2005), Hyndman et al. (2013)
proposed a product-ratio functional method to coherently forecast mortality rates across different
populations. This model can be viewed as a generalization of the Li and Lee (2005) model, and
a multi-population extension of the Hyndman and Ullah (2007) model. The Hyndman–Booth–
Yasmeen model is presented as follows

log(mx,t,i) = µi(x) +
K∑
k=1

βt,kϕk(x) +
M∑

m=1

δt,m,iΨm,i(x) + ϵx,t,i, (6)

where mx,t,i is the mortality rate for age x in year t for population i. µi(x) represents the level
of log mortality rates at age x for population i. ϕk(x) and Ψm,i(x) are orthonormal basis func-
tions, βt,k represents the common trend for all populations in the group, and δt,m,i denotes the
population-specific time trend. ϵx,t,i is the error term. To ensure the coherence of mortality fore-
casts, we restrict δt,m,i to be stationary processes. The H–B–Y model can be implemented by using
demography::coherentfdm in R. The values of K and M are both set to be 6.
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4.2 National-level results

To evaluate forecast accuracy we choose the mean absolute scaled error (MASE) as the error mea-
sure. The MASE for h-step-ahead forecasts across all ages and expanding windows is defined as
follows

MASE =
1

86× h× r

85+∑
x=0

10∑
h=1

13∑
r=1

|m̂x,28+r+h −mx,28+r+h|
1

28+r−1

∑28+r
t=2 |mx,t −mx,t−1|

,

where 28 is the number of years in the first training sample 1969–1996. Our first study applies the
proposed GBLC and GLBC-age models to mortality rates of a single population (i.e. the national-
level male mortality), and we compare our results with those from the Lee–Carter model and the
Hyndman–Ullah model. Table 4.1 presents the MASE of out-of-sample forecasts of national-level
male mortality over the forecast horizon h from 1 to 10. The MASE values with the smallest values
among the four models (representing the best-performing model) are highlighted in bold for each
forecast horizon.

The results in Table 4.1 state that GBLC-age model has the best performance across all four models
and all forecast horizons. In contrast, the L–C model provides the worst forecast accuracy, which
is not surprising given its simple structure, with only one age-time interaction term included in the
model. It is worth noting that by adding multiple orthonormal basis functions, the H–U model shows
a considerable improvement in forecast accuracy over the L–C model, especially for shorter forecast
horizons, although these improvements are modest compared to those achieved via boosting.

Table 4.1: MASE of out-of-sample forecasts for national-level male mortality

h L–C H–U GBLC GBLC-age

1 1.468 0.695 0.591 0.580
2 1.539 0.835 0.683 0.678
3 1.606 0.981 0.785 0.781
4 1.672 1.121 0.881 0.877
5 1.741 1.262 0.973 0.968
6 1.814 1.402 1.072 1.068
7 1.895 1.545 1.181 1.177
8 1.980 1.681 1.294 1.290
9 2.066 1.806 1.404 1.402
10 2.151 1.919 1.512 1.511

To assess whether the differences in MASE are statistically significant, we compute the model confi-
dence sets introduced by Hansen et al. (2011). The model confidence set is analogous to a confidence
interval, in the sense that over repeated samples, that the best forecasting method is included in
the model confidence set with a predetermined probability. We consider a 95% confidence level for
the model confidence set using the R package MCS (Bernardi, 2017). The results are shown in Table
4.2, where the tick indicates that the forecasts lie inside the model confidence set. It can be seen
that GBLC and GBLC-age perform much better than the L–C and H–U models. In particular,
forecasts from the GBLC-age model lie in the model confidence sets for all forecast horizons. On
the other hand, the L–C and H–U models are always outside of the model confidence sets. Clearly,
the GBLC-age model gives the best performance across all models.
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Table 4.2: MCS results for national-level male mortality

h L–C H–U GBLC GBLC-age

1 ✓
2 ✓ ✓
3 ✓ ✓
4 ✓ ✓
5 ✓
6 ✓ ✓
7 ✓ ✓
8 ✓ ✓
9 ✓ ✓
10 ✓ ✓

To gain a better understanding of how our proposed models enhance forecast accuracy across dif-
ferent age groups, in Figure 4.1 we present improvement in MASE by 5 broad age groups, namely,
0–19, 20–39, 40–59, 60–79, and 80–85+. The H–U model is used as the benchmark model. Panel
(a) plots the MASE improvement from the H–U model to the GBLC model. We observe an overall
improvement across all age groups, over almost all forecast horizons. In particular, the improve-
ment is more pronounced for the older age group 80–85+ over longer forecast horizons. Panel (b)
presents the improvement from the GBLC model to the GBLC-age model. Some mixed results
are observed over age groups: while an improvement in forecast accuracy is achieved in middle to
older age groups, especially in ages 40–59 and 80–85+, MASE values slightly worsen in younger age
groups below 40. However, these changes in MASE yield an overall improvement from the GBLC
model to the GBLC-age model, as stated in Table 4.1. It should be noted that the magnitude of
these changes is relatively small compared to panel (a). We then plot the improvement in MASE
from the H–U model to GBLC-age in Figure 4.2. The improvement patterns across age groups can
be shown to be very similar to those in panel (a) of Figure 4.1.
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Figure 4.1: Improvement in MASE for national-level male mortality, a) from H–U to GBLC, b)
from GBLC to GBLC-age.
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Figure 4.2: Improvement in MASE for national-level male mortality, from H–U to GBLC-age.

4.3 State-level results

In the second study, we apply the proposed GBLC, GLBC-age, GLBC-state, and GLBC-age-state
models to forecast multi-population mortality rates (i.e. the state-level mortality). We compare
our results with those from the Lee–Carter model, the Hyndman–Ullah model, and the Hyndman–
Booth–Yasmeen model. Since both age and state shrinkages are considered in this exercise, we aim
to disentangle the two effects by visualizing the MASE improvement over different models. To gain
more insights on the spatial relationship of mortality across states, we also produce choropleth maps
to visualize how improvement is achieved via state shrinkage.

Table 4.3: MASE of out-of-sample forecasts for state-level male mortality

h L–C H–U H–B–Y GBLC GBLC-age GBLC-state GBLC-age-state

1 0.743 0.657 0.609 0.614 0.592 0.611 0.590
2 0.761 0.677 0.636 0.632 0.610 0.630 0.608
3 0.778 0.698 0.666 0.652 0.628 0.649 0.626
4 0.796 0.719 0.694 0.675 0.650 0.672 0.647
5 0.813 0.741 0.716 0.697 0.671 0.694 0.668
6 0.830 0.762 0.738 0.722 0.695 0.718 0.691
7 0.848 0.783 0.761 0.748 0.720 0.744 0.717
8 0.867 0.805 0.782 0.776 0.747 0.772 0.743
9 0.885 0.825 0.801 0.803 0.773 0.799 0.769
10 0.902 0.844 0.818 0.829 0.798 0.824 0.793

Table 4.3 presents the MASE values of out-of-sample forecasts of state-level male mortality across
h from 1 to 10. Once again, we have highlighted in bold the smallest MASE values among the
four models, representing the best-performing model, for each forecast horizon. The results show
that the GBLC-age-state model has the best forecasting performance over all forecast horizons.
First, it should be noted that we observe consistent improvements from the L–C model to the H–U
model, and from the H–U model to the H–B–Y model. This observation is unsurprising, as the
H–U model improves upon the L–C model via additional age-time factors, and the H–B–Y model
ensures coherence in multi-population forecasts. On the other hand, the GBLC model provides
comparable but slightly better results compared to the H–B–Y. It can be argued that improvement
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achieved from age shrinkage is more substantial than the stage shrinkage. However, once both age
and state shrinkages are incorporated in the model, the model performance is enhanced even further.

In Table 4.4, we present the MCS results for all 7 models, across different forecast horizons. It can
be seen that the GBLC-age-state model is the only model that lies within the model confidence
sets for h = 1 to 7. In the case of h = 8, the H–B–Y model, the GBLC-age model, and the
GBLC-age-state model all provide forecasts within the model confidence sets. Notably, for longer
forecast horizons of h = 9 and 10, the H–B–Y model provides the best results across all models,
demonstrating its strong forecast performance in longer terms.

Table 4.4: MCS results for state-level male mortality

h L–C H–U H–B–Y GBLC GBLC-age GBLC-state GBLC-age-state

1 ✓
2 ✓
3 ✓
4 ✓
5 ✓
6 ✓
7 ✓
8 ✓ ✓ ✓
9 ✓
10 ✓

Similar to the national-level exercise, we present improvement in MASE by 5 broad age groups in
Figure 4.3. The results are based on average across all states. We use H–B–Y as the benchmark
model. Panel (a) shows MASE improvement from the H–B–Y model to the GBLC model. We
can see that the forecast accuracy for younger ages below 20, and for older ages above 60 has been
improved by the gradient boosting method. For age groups 40–59 and particularly 20–39, there has
been some deterioration in forecast accuracy. Panel (b) presents the improvement achieved by the
GBLC-age model over the GBLC model. Across the five age groups, we observe improvements in
MASE, with the exception of ages 0–19, over shorter forecast horizons. The improvement seems
to be particularly strong among ages 20–29 over longer forecast horizons. Panel (c) demonstrates
additional improvement achieved by adding the state shrinkage. Again, the biggest improvement
lies in age group 20–29. Figure 4.4 plots the aggregated MASE improvement from the H–B–Y model
to the GBLC-age-state model. While a slight decrease in accuracy still persists for ages 20–59, the
magnitude of the decrease has been significantly lower, as indicated by the shade of red color used
in Figure 4.3 Panel (a) and Figure 4.4. These visualizations are consistent with the findings and
conclusions made earlier based on Table 4.3, where the overall forecast accuracy across age groups
is improved via gradient boosting together with age and stage shrinkages.

As mentioned before, another aim of this research is to uncover the spatial relationship of mortality
rates across different regions. Understanding how state shrinkage improves forecast accuracy is
an important step towards understanding how the mortality experience of neighbouring states are
related to one another. In Table 4.5, we present the MASE results for selected states for h = 10.
The left side of the table ranks the results according to the improvement in MASE from GBLC to
GBLC-state while the right side does the same for GBLC-age to GBLC-age-state8.

8For brevity only the ten “most improved” and ten “least improved” states are shown in Table 4.5. A full list of
results is available in Table A.2 of the Appendix.
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Figure 4.3: Improvement in MASE for state-level male mortality, a) from H–U to GBLC, b) from
GBLC to GBLC-age, c) from GBLC-age to GBLC-age-state.
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Figure 4.4: Improvement in MASE for state-level male mortality from H–B–Y to GBLC-age-state.

Table 4.5: MASE of out-of-sample forecasts for selected states, h=10, males

Rank State GBLC GBLC-state Imprv State GBLC-age GBLC-age-state Imprv

1 OH 1.015 1.005 0.011 OH 1.002 0.990 0.012
2 NE 0.824 0.815 0.010 ID 0.724 0.712 0.012
3 UT 0.734 0.725 0.009 CO 0.696 0.684 0.012
4 MA 0.799 0.790 0.009 DE 0.882 0.870 0.012
5 WY 0.962 0.953 0.009 IA 0.779 0.768 0.011
6 CO 0.714 0.706 0.009 NE 0.782 0.772 0.010
7 GA 0.720 0.712 0.008 GA 0.693 0.684 0.009
8 MO 0.840 0.832 0.008 MN 0.695 0.685 0.009
9 IA 0.808 0.801 0.007 WI 0.771 0.762 0.009
10 ID 0.755 0.748 0.007 TN 0.833 0.824 0.009
...

...
...

...
...

...
...

...
...

41 WV 0.994 0.992 0.002 AK 0.769 0.769 0.000
42 MI 0.813 0.811 0.001 HI 0.910 0.910 0.000
43 RI 0.945 0.944 0.001 MS 0.776 0.777 -0.001
44 ME 0.960 0.960 0.001 FL 0.741 0.742 -0.001
45 SC 0.742 0.742 0.000 TX 0.667 0.669 -0.002
46 AK 0.824 0.824 0.000 RI 0.928 0.930 -0.002
47 HI 0.957 0.957 0.000 CA 0.642 0.644 -0.002
48 VA 0.728 0.729 0.000 MI 0.784 0.786 -0.002
49 FL 0.747 0.748 -0.001 AZ 0.690 0.693 -0.003
50 MD 0.828 0.831 -0.002 VA 0.698 0.702 -0.004
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We observe that Ohio (OH), Colorado (CO), Georgia (GA), Iowa (IA), and Idaho (ID) are ranked
in the top 10 on both sides of the table. On the other hand, Michigan (MI), Rhode Island (RI),
and Virginia (VA) are ranked in the bottom 10 on both sides of the table.9

Figures 4.5 and 4.6 show the same information as Table 4.5 (improvement due to state-based
shrinkage) for all states using a choropleth for the case where h = 10. In Figure 4.5, we can
see that besides an overall elevation of forecast performance across all states, the state shrinkage
works particularly well in the states of the Northern Great Plains such as Wyoming, Nebraska,
Idaho, and Colorado, and the states of the Rust Belt such as Ohio and Wisconsin. The Northern
Great Plains is a region with relatively sparse population in the US, which potentially explains
the stronger improvement of state shrinkage by “borrowing” information from nearby states with
a larger population. As discussed in Section 3, over the evaluation period, the Rust Belt states
suffered high rates of “deaths of despair” and this common local factor may explain the gains
from state-based shrinkage being particularly strong in these states. To sum up, improvement in
MASE is observed in almost every single state, with the only exceptions being Maryland, Florida,
and Virginia. Figure 4.6 provides another way to assess the improvement resulting from the state
shrinkage by looking at the change in MASE from GBLC-age to GBLC-age-state. The magnitude
of improvements shows a similar geographical pattern. It can be seen that adding state shrinkage
has led to improvement in most states, especially in Ohio, Idaho, Colorado, and Delaware. While
there has been some deterioration in forecast accuracy in a few states, such as Virginia, Arizona,
and Michigan, it is relatively small in magnitude. On the whole, Figures 4.5 and 4.6 are consistent
with each other. It can be argued that, when age shrinkage is included in gradient boosting, the
improvement from adding state shrinkage may not be as substantial as when state shrinkage is
added to the GBLC model without age shrinkage. On average, the GBLC-age-state model still has
superior performance over the GBLC-age model across all states, as shown in Table 4.3.
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Figure 4.5: Improvement in MASE for state-level male mortality from GBLC to GBLC-state, h=10.

9Note that for Alaska (AK) and Hawaii (HI), state shrinkage is not applicable. Therefore, the change in MASE
is simply 0.
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Figure 4.6: Improvement in MASE for state-level male mortality from GBLC-age to GBLC-age-
state, h=10.

5 Conclusion

In this paper, we propose single- and multi-population mortality models that utilize gradient boost-
ing methods with shrinkage in age and spatial dimensions. We then apply these models to US male
mortality in our empirical studies. For national-level mortality forecasting, we demonstrate that the
gradient boosted Lee–Carter model provides significant improvement over the benchmark models.
Further improvement is achieved when age shrinkage is added to the model, especially for older age
groups. Overall, the gradient boosted Lee–Carter model with age shrinkage achieves the highest
forecast accuracy for national-level mortality projections. For state-level mortality forecasts, we
demonstrate that the gradient boosted Lee–Carter model with age and state shrinkage exhibits the
best performance in terms of out-of-sample forecast accuracy. The state shrinkage works particu-
larly well for those states with small population and/or common risk factors.

Our proposed methodology opens up several avenues for future research. It should be noted that the
proposed gradient boosting model with shrinkage is readily applicable to other stochastic mortality
models such as the Cairns-Blake-Dowd model and its variations. Another interesting extension
to our work would be the application of the proposed shrinkage methods at a finer geographical
granularity (e.g. US counties rather than US states), if such data become available. At this scale,
regional effects may play a greater role, for example higher mortality due to environmental hazards
may only be observed at a very local level. Therefore, we anticipate that when the proposed models
are applied to mortality rates of finer geographical areas, the spatial shrinkage will have an even more
significant impact on forecast accuracy. Finally, our methods for age-based and spatial shrinkage
only rely on a concept of neighbourhood which could be broadened to include other notions of
similarity between time series. For instance, mortality rates of people in “neighbouring” income
deciles could also be shrunk together using our proposed methodology.
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Appendix

Table A.1: US state abbreviations and names (including the District of Columbia)

Abbreviation State name Abbreviation State name

AL Alabama MT Montana
AK Alaska NE Nebraska
AZ Arizona NV Nevada
AR Arkansas NH New Hampshire
CA California NJ New Jersey
CO Colorado NM New Mexico
CT Connecticut NY New York
DE Delaware NC North Carolina
DC District of Columbia ND North Dakota
FL Florida OH Ohio
GA Georgia OK Oklahoma
HI Hawaii OR Oregon
ID Idaho PA Pennsylvania
IL Illinois RI Rhode Island
IN Indiana SC South Carolina
IA Iowa SD South Dakota
KS Kansas TN Tennessee
KY Kentucky TX Texas
LA Louisiana UT Utah
ME Maine VT Vermont
MD Maryland VA Virginia
MA Massachusetts WA Washington
MI Michigan WV West Virginia
MN Minnesota WI Wisconsin
MS Mississippi WY Wyoming
MO Missouri
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Table A.2: MASE of out-of-sample forecasts for all states and District of Columbia, h=10, males

State L–C H–U H–B–Y GBLC GBLC-age GBLC-state GBLC-age-state

AL 0.846 0.799 0.777 0.843 0.810 0.841 0.809
AK 0.901 0.755 0.720 0.824 0.769 0.824 0.769
AZ 0.625 0.614 0.640 0.708 0.690 0.704 0.693
AR 0.730 0.755 0.756 0.831 0.791 0.826 0.788
CA 0.780 0.711 0.890 0.656 0.642 0.654 0.644
CO 0.699 0.669 0.656 0.714 0.696 0.706 0.684
CT 0.842 0.794 0.867 0.809 0.803 0.804 0.795
DE 1.267 0.971 0.961 0.943 0.882 0.939 0.870
DC 1.798 1.646 1.345 1.237 1.205 1.241 1.210
FL 0.755 0.727 0.825 0.747 0.741 0.748 0.742
GA 0.698 0.670 0.706 0.720 0.693 0.712 0.684
HI 1.099 0.970 0.928 0.957 0.910 0.957 0.910
ID 0.697 0.712 0.605 0.755 0.724 0.748 0.712
IL 0.673 0.748 0.843 0.720 0.696 0.716 0.691
IN 0.934 0.907 0.861 0.860 0.826 0.856 0.820
IA 0.726 0.711 0.680 0.808 0.779 0.801 0.768
KS 0.740 0.795 0.720 0.828 0.790 0.823 0.784
KY 0.969 0.943 0.813 0.905 0.867 0.901 0.864
LA 0.769 0.847 0.734 0.884 0.850 0.882 0.849
ME 1.394 1.058 0.973 0.960 0.936 0.960 0.934
MD 0.747 0.776 0.872 0.828 0.793 0.831 0.792
MA 0.863 0.810 0.874 0.799 0.774 0.790 0.772
MI 0.893 0.895 0.868 0.813 0.784 0.811 0.786
MN 0.677 0.716 0.685 0.730 0.695 0.724 0.685
MS 0.710 0.724 0.698 0.831 0.776 0.827 0.777
MO 0.847 0.850 0.792 0.840 0.810 0.832 0.805
MT 1.187 0.918 0.852 0.927 0.898 0.922 0.897
NE 0.919 0.819 0.673 0.824 0.782 0.815 0.772
NV 0.685 0.775 0.507 0.621 0.609 0.618 0.602
NH 1.281 1.037 0.977 0.929 0.903 0.925 0.898
NJ 0.781 0.746 0.898 0.764 0.742 0.760 0.738
NM 0.792 0.761 0.716 0.757 0.723 0.754 0.717
NY 0.717 0.664 0.924 0.660 0.651 0.655 0.645
NC 0.795 0.817 0.758 0.779 0.752 0.775 0.745
ND 1.183 1.003 0.935 0.999 0.955 0.993 0.951
OH 1.183 1.129 1.078 1.015 1.002 1.005 0.990
OK 0.875 0.834 0.876 0.864 0.820 0.860 0.817
OR 0.695 0.664 0.629 0.705 0.684 0.700 0.679
PA 0.900 0.870 0.976 0.868 0.847 0.863 0.843
RI 1.333 1.207 0.993 0.945 0.928 0.944 0.930
SC 0.700 0.680 0.664 0.742 0.698 0.742 0.698
SD 1.138 1.010 0.815 0.900 0.862 0.893 0.861
TN 0.895 0.898 0.811 0.865 0.833 0.860 0.824
TX 0.702 0.685 0.744 0.681 0.667 0.678 0.669
UT 0.637 0.630 0.601 0.734 0.691 0.725 0.684
VT 1.323 1.093 1.090 0.985 0.941 0.980 0.933
VA 0.770 0.757 0.840 0.728 0.698 0.729 0.702
WA 0.615 0.595 0.615 0.646 0.634 0.643 0.629
WV 1.261 1.151 1.004 0.994 0.958 0.992 0.953
WI 0.786 0.771 0.764 0.808 0.771 0.803 0.762
WY 1.145 0.974 0.894 0.962 0.897 0.953 0.891
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