^y=Sβ+ϵ
S=⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝1111110000111000010000100001⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠
^β=(S′S)−1S′^y
^β=(S′S)−1S′^y
~y=S(S′S)−1S′^y
^β=(S′S)−1S′^y
~y=S(S′S)−1S′^y
~y=S(S′WS)−1S′W^y
LW(y,˘y)=(y−˘y)′W(y−˘y)
LW(y,˘y)=(y−˘y)′W(y−˘y)
LW(y,~y)≤LW(y,^y)
~y=S(S′Σ−1S)−1S′Σ−1^y where Σ is the forecast error covariance.
Σ=E[(y−^y)(y−^y)′]
ν(s(B))=μ(B)∀B∈FRm and s(B) is the image of B under s(.).
Let (Rn,FRn,^ν) be a probability triple corresponding to a base forecast.
Let (Rn,FRn,^ν) be a probability triple corresponding to a base forecast.
The reconciled forecast is characterised by
~ν(A)=^ν(ψ−1(A))∀A∈Fs and ψ−1(A) is the pre-image of A under ψ(.).
Let (Rn,FRn,^ν) be a probability triple corresponding to a base forecast.
The reconciled forecast is characterised by
~ν(A)=^ν(ψ−1(A))∀A∈Fs and ψ−1(A) is the pre-image of A under ψ(.).
If ^y[1],…,^y[L] is a sample from some base probabilistic forecast, then ~y[1],…,~y[L] is a sample from the reconciled forecast where
~y[l]=ψ(^y[l])∀l=1,…,L
If ^y[1],…,^y[L] is a sample from some base probabilistic forecast, then ~y[1],…,~y[L] is a sample from the reconciled forecast where
~y[l]=ψ(^y[l])∀l=1,…,L Reconciling a sample from the base distribution gives a sample from the reconciled distribution.
If ^y[1],…,^y[L] is a sample from some base probabilistic forecast, then ~y[1],…,~y[L] is a sample from the reconciled forecast where
~y[l]=ψ(^y[l])∀l=1,…,L Reconciling a sample from the base distribution gives a sample from the reconciled distribution.
Athanasopoulos, G. et al. (2017). "Forecasting with temporal hierarchies". In: European Journal of Operational Research 262.1, pp. 60-74.
Ben Taieb, S. et al. (2021). "Hierarchical Probabilistic Forecasting of Electricity Demand With Smart Meter Data". In: Journal of the American Statistical Association 116, pp. 27-43.
Burba, D. et al. (2021). "A trainable reconciliation method for hierarchical time-series". URL: https://arxiv.org/abs/2101.01329.
Byron, R. P. (1978). "The estimation of large social account matrices". In: Journal of the Royal Statistical Society, Series A 141.3, pp. 359-367.
Di Fonzo, T. et al. (2023). "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives". In: International Journal of Forecasting 39.1, pp. 39-57.
Gross, C. W. et al. (1990). "Disaggregation methods to expedite product line forecasting". In: Journal of Forecasting 9.3, pp. 233-254.
Hollyman, R. et al. (2021). "Understanding forecast reconciliation". In: European Journal of Operational Research 294.1, pp. 149-160. DOI: 10.1016/j.ejor.2021.01.017.
Hyndman, R. J. et al. (2011). "Optimal combination forecasts for hierarchical time series". In: Computational Statistics and Data Analysis 55.9, pp. 2579-2589.
Jeon, J. et al. (2019). "Probabilistic forecast reconciliation with applications to wind power and electric load". In: European Journal of Operational Research 279.2, pp. 364-379.
Panagiotelis, A. et al. (2021). "Forecast reconciliation: A geometric view with new insights on bias correction". In: International Journal of Forecasting 37.1, pp. 343-359.
Panagiotelis, A. et al. (2023). "Probabilistic forecast reconciliation: properties, evaluation and score optimisation". In: European Journal of Operational Research 306.2, pp. 693-706.
Rangapuram, S. S. et al. (2021). "End-to-end learning of coherent probabilistic forecasts for hierarchical time series". In: Proceedings of the 38th International Conference on Machine Learning, PMLR 139. , pp. 8832-8843.
Schwarzkopf, A. B. et al. (1988). "Top-down versus bottom-up forecasting strategies". In: International Journal of Production Research 26 (11), pp. 1833-1843.
Spiliotis, E. et al. (2021). "Hierarchical forecast reconciliation with machine learning". In: Applied Soft Computing 112, p. 107756.
Stone, R. et al. (1942). "The precision of national income estimates". In: Review of Economic Studies 9.2, pp. 111-125. DOI: 10.2307/2967664.
Wickramasuriya, S. L. (2023). "Probabilistic forecast reconciliation under the Gaussian framework". In: Journal of Business & Economic Statistics, pp. 1-14.
Wickramasuriya, S. L. et al. (2019). "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization". In: Journal of the American Statistical Association 114.526, pp. 804-819.
Zambon, L. et al. (2022). "Efficient probabilistic reconciliation of forecasts for real-valued and count time series". URL: https://arxiv.org/abs/2210.02286.
Zhang, B. et al. (2023). "Discrete forecast reconciliation". URL: https://arxiv.org/abs/2305.18809.
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |