Li Li Han Li


yx,t=ax+bxκt+ϵx,t
yx,t=ax+bxκt+ϵx,t
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Neighborhood structure for age

Neighborhood structure for states



(fMD,t−fDE,t)+(fMD,t−fPA,t)+(fMD,t−fWV,t)
(fMD,t−fDE,t)+(fMD,t−fPA,t)+(fMD,t−fWV,t)
(f50,t−f49,t)+(f50,t−f51,t)
(fMD,t−fDE,t)+(fMD,t−fPA,t)+(fMD,t−fWV,t)
(f50,t−f49,t)+(f50,t−f51,t)
For presentation purposes take averages across 20 year age bands. Figures show improvement in MASE


Improvement from GBLC to GBLC-state
![]()
Brant, S. B. et al. (2022). Copulaboost: additive modeling with copula-based model components. arXiv: 2208.04669 [stat.ME].
Friedman, J. et al. (2000). "Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)". In: The Annals of Statistics 28.2, pp. 337 - 407.
Hyndman, R. J. et al. (2013). "Coherent mortality forecasting: the product-ratio method with functional time series models". In: Demography 50.1, pp. 261-283.
Hyndman, R. J. et al. (2007). "Robust forecasting of mortality and fertility rates: A functional data approach". In: Computational Statistics & Data Analysis 51.10, pp. 4942-4956.
Lee, R. D. et al. (1992). "Modeling and forecasting US mortality". In: Journal of the American Statistical Association 87.419, pp. 659-671.
Tutz, G. et al. (2006). "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting". In: Biometrics 62.4, pp. 961-971.
Li Li Han Li

Keyboard shortcuts
| ↑, ←, Pg Up, k | Go to previous slide |
| ↓, →, Pg Dn, Space, j | Go to next slide |
| Home | Go to first slide |
| End | Go to last slide |
| Number + Return | Go to specific slide |
| b / m / f | Toggle blackout / mirrored / fullscreen mode |
| c | Clone slideshow |
| p | Toggle presenter mode |
| t | Restart the presentation timer |
| ?, h | Toggle this help |
| Esc | Back to slideshow |