Li Li Han Li
yx,t=ax+bxκt+ϵx,t
yx,t=ax+bxκt+ϵx,t
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Lt(yt,ft)=(yt−ft)′(yt−ft)+λf′tWft
Neighborhood structure for age
Neighborhood structure for states
(fMD,t−fDE,t)+(fMD,t−fPA,t)+(fMD,t−fWV,t)
(fMD,t−fDE,t)+(fMD,t−fPA,t)+(fMD,t−fWV,t)
(f50,t−f49,t)+(f50,t−f51,t)
(fMD,t−fDE,t)+(fMD,t−fPA,t)+(fMD,t−fWV,t)
(f50,t−f49,t)+(f50,t−f51,t)
For presentation purposes take averages across 20 year age bands. Figures show improvement in MASE
Improvement from GBLC to GBLC-state
Brant, S. B. et al. (2022). Copulaboost: additive modeling with copula-based model components. arXiv: 2208.04669 [stat.ME].
Friedman, J. et al. (2000). "Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)". In: The Annals of Statistics 28.2, pp. 337 - 407.
Hyndman, R. J. et al. (2013). "Coherent mortality forecasting: the product-ratio method with functional time series models". In: Demography 50.1, pp. 261-283.
Hyndman, R. J. et al. (2007). "Robust forecasting of mortality and fertility rates: A functional data approach". In: Computational Statistics & Data Analysis 51.10, pp. 4942-4956.
Lee, R. D. et al. (1992). "Modeling and forecasting US mortality". In: Journal of the American Statistical Association 87.419, pp. 659-671.
Tutz, G. et al. (2006). "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting". In: Biometrics 62.4, pp. 961-971.
Li Li Han Li
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |