⎛⎜⎝123345⎞⎟⎠+⎛⎜⎝624256⎞⎟⎠=⎛⎜⎝7475911⎞⎟⎠
3×⎛⎜⎝123345⎞⎟⎠=⎛⎜⎝36991215⎞⎟⎠
⎛⎜⎝123345⎞⎟⎠′=(134235)
(134)×⎛⎜⎝645⎞⎟⎠=
(134)×⎛⎜⎝645⎞⎟⎠=1×6+...
(134)×⎛⎜⎝645⎞⎟⎠=6+...
(134)×⎛⎜⎝645⎞⎟⎠=6+3×4+...
(134)×⎛⎜⎝645⎞⎟⎠=6+12+...
(134)×⎛⎜⎝645⎞⎟⎠=6+12+4×5
(134)×⎛⎜⎝645⎞⎟⎠=6+12+20
(134)×⎛⎜⎝645⎞⎟⎠=38
z′z=(z1z2⋯zn)⎛⎜ ⎜ ⎜ ⎜⎝z1 z2 ⋮ zn⎞⎟ ⎟ ⎟ ⎟⎠ =z21+z22+…z2n =n∑i=1z2i
(abcdef)×⎛⎜⎝ghijkl⎞⎟⎠
(abcdef)×⎛⎜⎝ghijkl⎞⎟⎠=(ag+bi+ck.........)
(abcdef)×⎛⎜⎝ghijkl⎞⎟⎠=(ag+bi+ckah+bj+cl......)
(abcdef)×⎛⎜⎝ghijkl⎞⎟⎠=(ag+bi+ckah+bj+cldg+ei+fk...)
(abcdef)×⎛⎜⎝ghijkl⎞⎟⎠=(ag+bi+ckah+bj+cldg+ei+fkdh+ej+fl)
When multiplying matrices check two things
X(a×b)Y(b×c)=Z(a×c)
In a regression model
y1=β1x11+β2x12+…+βkx1k+ϵ1 y2=β1x21+β2x22+…+βkx2k+ϵ2 ⋮=⋮+⋮+…+⋮+⋮ yn=β1xn1+β2xn2+…+βkxnk+ϵn
y=Xβ+ϵ
σ2=E[(y−μ)2]
s2=1n−1n∑i=1[(yi−¯y)2]
Σ=E[(y−μ)(y−μ)′] and
S=1n−1n∑i=1[(yi−¯y)(y−¯y)′]
E[yy′]=E[(y1 y2)(y1y2)] =E[(y21y1y2 y2y1y22)] =(E[y21]E[y1y2] E[y2y1]E[y22])
Σ=(E[y21]E[y1y2] E[y2y1]E[y22])
The Identity Matrix is
⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝10⋯0 01⋱⋮ ⋮⋱⋱0 0⋯01⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠
Multiplying any matrix by the identity matrix gives the same matrix. I.e. AI=IA=A.
R−1=R′
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |